4.7 Article

A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 65, 期 22, 页码 6577-6588

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eru377

关键词

Phosphate starvation responses; purple acid phosphatase 10; local and systemic signalling; ethylene; sucrose; Arabidopsis

资金

  1. Natural Science Foundation of China [31370290]
  2. Ministry of Agriculture of China [2014ZX0800932B]

向作者/读者索取更多资源

The induction and secretion of acid phosphatases (APases) is a universal response of plants to phosphate (Pi) starvation. AtPAP10 (Arabidopsis purple acid phosphatase 10) is a major Pi starvation-induced APase that is associated with the root surface in Arabidopsis. So far, the roles of local and systemic signalling in regulating root-associated AtPAP10 activity remain largely unknown. In this work, we show that a decrease of local, external Pi availability is sufficient to induce AtPAP10 transcription in roots in the presence of sucrose, a systemic signal from shoots, whereas the magnitude of the induction is affected by the Pi status of the whole plant. Once the AtPAP10 mRNAs are synthesized in roots, subsequent accumulation of AtPAP10 proteins in root cells and increase in AtPAP10 activity on the root surface are mainly controlled by local signalling. Previously, ethylene has been demonstrated to be a positive regulator of AtPAP10 activity. In this study, we provide evidence that under Pi deficiency ethylene mainly modulates enzymatic activity of AtPAP10 on the root surface, but not AtPAP10 transcription and protein accumulation, suggesting that it functions as a local signal. Furthermore, our work indicates that the effect of ethylene on the induction of root-associated AtPAP10 activity depends on sucrose, but that the effect of sucrose does not depend on ethylene. These results reveal new insights into the distinct roles of local and systemic signalling in the regulation of root-associated AtPAP10 activity under Pi starvation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据