4.7 Review

Investigating water transport through the xylem network in vascular plants

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 65, 期 7, 页码 1895-1904

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eru075

关键词

Water flow; sap flow dynamics; hydraulic regulation; cohesion-tension theory; efficiency; safety trade-off; embolism

资金

  1. Advanced Biomass R&D Center of the Global Frontier Project - MEST [ABC-2011-0028378]

向作者/读者索取更多资源

A review on experimental methods used to investigate sap flow underlines the necessity to better characterize the relationships between the hydraulic regulation and the structural characteristics of the xylem network.Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据