4.7 Article

The BEL1-like family of transcription factors in potato

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 65, 期 2, 页码 709-723

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/ert432

关键词

BELL1; KNOTTED1; mobile RNA; Solanum tuberosum; TALE; tuberization

资金

  1. NSF [DBI-0820659]
  2. National Research Initiative from the USDA National Institute of Food and Agriculture [2008-02806]
  3. Direct For Biological Sciences
  4. Division Of Integrative Organismal Systems [0820659] Funding Source: National Science Foundation

向作者/读者索取更多资源

BEL1-type proteins are ubiquitous plant transcription factors in the three-amino-acid-loop-extension superfamily. They interact with KNOTTED1-like proteins, and function as heterodimers in both floral and vegetative development. Using the yeast two-hybrid system with POTATO HOMEOBOX1 (POTH1) as the bait, seven BEL1-type proteins were originally identified. One of these genes, designated StBEL5, has transcripts that move long distances in the plant and enhance tuberization and root growth. Using the potato genome database, 13 active BEL1-like genes were identified that contain the conserved homeobox domain and the BELL domain, both of which are essential for the function of BEL1-type proteins. Phylogenetic analysis of the StBEL family demonstrated a degree of orthology with the 13 BEL1-like genes of Arabidopsis. A profile of the gene structure of the family revealed conservation of the length and splicing patterns of internal exons that encode key functional domains. Yeast two-hybrid experiments with KNOTTED1-like proteins and the new StBELs confirmed the interactive network between these two families. Analyses of RNA abundance patterns clearly showed that three StBEL genes, BEL5, -11, and -29, make up approximately two-thirds of the total transcript values for the entire family. Among the 10 organs evaluated here, these three genes exhibited the 12 greatest transcript abundance values. Using a phloem-transport induction system and gel-shift assays, transcriptional cross-regulation within the StBEL family was confirmed. Making use of the potato genome and current experimental data, a comprehensive profile of the StBEL family is presented in this study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据