4.7 Review

Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 66, 期 3, 页码 627-646

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eru386

关键词

Auxin; circadian; melatonin; morphogenesis; senescence; stress

向作者/读者索取更多资源

Melatonin is synthesized in Alphaproteobacteria, Cyanobacteria, Dinoflagellata, Euglenoidea, Rhodophyta, Phaeophyta, and Viridiplantae. The biosynthetic pathways have been identified in dinoflagellates and plants. Other than in dinoflagellates and animals, tryptophan is not 5-hydroxylated in plants but is first decarboxylated. Serotonin is formed by 5-hydroxylation of tryptamine. Serotonin N-acetyltransferase is localized in plastids and lacks homology to the vertebrate aralkylamine N-acetyltransferase. Melatonin content varies considerably among species, from a few picograms to several micrograms per gram, a strong hint for different actions of this indoleamine. At elevated levels, the common and presumably ancient property as an antioxidant may prevail. Although melatonin exhibits nocturnal maxima in some phototrophs, it is not generally a mediator of the signal 'darkness'. In various plants, its formation is upregulated by visible and/or UV light. Increases are often induced by high or low temperature and several other stressors including drought, salinity, and chemical toxins. In Arabidopsis, melatonin induces cold-and stress-responsive genes. It has been shown to support cold resistance and to delay experimental leaf senescence. Transcriptome data from Arabidopsis indicate upregulation of genes related to ethylene, abscisic acid, jasmonic acid, and salicylic acid. Auxin-like actions have been reported concerning root growth and inhibition, and hypocotyl or coleoptile lengthening, but effects caused by melatonin and auxins can be dissected. Assumptions on roles in flower morphogenesis and fruit ripening are based mainly on concentration changes. Whether or not melatonin will find a place in the phytohormone network depends especially on the identification of molecular signals regulating its synthesis, high-affinity binding sites, and signal transduction pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据