4.7 Article

Na+/H+ exchanger 1 participates in tobacco disease defence against Phytophthora parasitica var. nicotianae by affecting vacuolar pH and priming the antioxidative system

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 65, 期 20, 页码 6107-6122

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eru351

关键词

Cellular redox homeostasis; disease resistance; NAD(P) (H) pool; NHX1; tobacco; vacuolar H+ flux and pH

资金

  1. Chinese Ministry of Agriculture [2013ZX08009-003-002]
  2. National Natural Science Foundation of China [31200201]

向作者/读者索取更多资源

Despite the importance of NHX1 (Na+/H+ exchanger 1) in plant salt tolerance, little is known about its other functions. In this study, intriguingly, it was found that NHX1 participated in plant disease defence against Phytophthora parasitica var. nicotianae (Ppn) in Nicotiana benthamiana. NbNHX1 was originally isolated from N. benthamiana, and characterized. The subcellular localization of NbNHX1 with its C-terminus fused with green fluorescent protein indicated that NbNHX1 localized primarily to the tonoplast. Tobacco rattle virus-induced NbNHX1 silencing led to reduced H+ efflux from the vacuole to cytoplasts, and decreased Ppn resistance in N. benthamiana. After attack by Ppn, NbNHX1-silenced plants exhibited impaired ability to scavenge reactive oxidative species (ROS) induced by the pathogen. Pea early browning virus-mediated ectopic expression of SeNHX1 (from Salicornia europaea) or AtNHX1 (from Arabidopsis thaliana) both conferred enhanced Ppn resistance to N. benthamiana, with a lower H2O2 concentration after Ppn inoculation. Further investigation of the role of NHX1 demonstrated that transient overexpression of NbNHX1 improved the vacuolar pH and cellular ROS level in N. benthamiana, which was coupled with an enlarged NAD(P) (H) pool and higher expression of ROS-responsive genes. In contrast, NbNHX1 silencing led to a lower pH in the vacuole and a lower cellular ROS level in N. benthamiana, which was coupled with a decreased NAD(P) (H) pool and decreased expression of ROS-responsive genes. These results suggest that NHX1 is involved in plant disease defence; and regulation of vacuolar pH by NHX1, affecting the cellular oxidation state, primes the antioxidative system which is associated with Ppn resistance in tobacco.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据