4.7 Review

Kinetic modelling of plant metabolic pathways

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 63, 期 6, 页码 2275-2292

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/ers080

关键词

Differential equations; enzyme kinetics; flux-balance analysis; metabolic control analysis; metabolic flux analysis; parameterization; steady state; stoichiometry; time-course

资金

  1. South African National Research Foundation (NRF)

向作者/读者索取更多资源

This paper provides a review of kinetic modelling of plant metabolic pathways as a tool for analysing their control and regulation. An overview of different modelling strategies is presented, starting with those approaches that only require a knowledge of the network stoichiometry; these are referred to as structural. Flux-balance analysis, metabolic flux analysis using isotope labelling, and elementary mode analysis are briefly mentioned as three representative examples. The main focus of this paper, however, is a discussion of kinetic modelling, which requires, in addition to the stoichiometry, a knowledge of the kinetic properties of the constituent pathway enzymes. The different types of kinetic modelling analysis, namely time-course simulation, steady-state analysis, and metabolic control analysis, are explained in some detail. An overview is presented of strategies for obtaining model parameters, as well as software tools available for simulation of such models. The kinetic modelling approach is exemplified with discussion of three models from the general plant physiology literature. With the aid of kinetic modelling it is possible to perform a control analysis of a plant metabolic system, to identify potential targets for biotechnological manipulation, as well as to ascertain the regulatory importance of different enzymes (including isoforms of the same enzyme) in a pathway. Finally, a framework is presented for extending metabolic models to the whole-plant scale by linking biochemical reactions with diffusion and advective flow through the phloem. Future challenges include explicit modelling of subcellular compartments, as well as the integration of kinetic models on the different levels of the cellular and organizational hierarchy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据