4.7 Review

Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 62, 期 1, 页码 59-68

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erq350

关键词

Root growth; soil compaction; soil strength; water potential

资金

  1. Scottish Executive Research Environment and Rural Affairs Department (REERAD)

向作者/读者索取更多资源

Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances > 0.8-2 MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about -0.5 MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that similar to 10% of penetration resistances were > 2 MPa at a matric potential of -10 kPa, rising to nearly 50% > 2 MPa at - 200 kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据