4.7 Article

Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 62, 期 10, 页码 3659-3669

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/err070

关键词

Arabidopsis thaliana; astaxanthin; beta-carotene ketolase; carotenoid; Haematococcus pluvialis

资金

  1. HKU
  2. Research Grants Council of Hong Kong Special Administrative Region, China

向作者/读者索取更多资源

Extending the carotenoid pathway to astaxanthin in plants is of scientific and industrial interest. However, expression of a microbial beta-carotene ketolase (BKT) that catalyses the formation of ketocarotenoids in transgenic plants typically results in low levels of astaxanthin. The low efficiency of BKTs in ketolating zeaxanthin to astaxanthin is proposed to be the major limitation for astaxanthin accumulation in engineered plants. To verify this hypothesis, several algal BKTs were functionally characterized using an Escherichia coli system and three BKTs were identified, with high (up to 85%), moderate (similar to 38%), and low (similar to 1%) conversion rate from zeaxanthin to astaxanthin from Chlamydomonas reinhardtii (CrBKT), Chlorella zofingiensis (CzBKT), and Haematococcus pluvialis (HpBKT3), respectively. Transgenic Arabidopsis thaliana expressing the CrBKT developed orange leaves which accumulated astaxanthin up to 2 mg g(-1) dry weight with a 1.8-fold increase in total carotenoids. In contrast, the expression of CzBKT resulted in much lower astaxanthin content (0.24 mg g(-1) dry weight), whereas HpBKT3 was unable to mediate synthesis of astaxanthin in A. thaliana. The none-native astaxanthin was found mostly in a free form integrated into the light-harvesting complexes of photosystem II in young leaves but in esterified forms in senescent leaves. The alteration of carotenoids did not affect chlorophyll content, plant growth, or development significantly. The astaxanthin-producing plants were more tolerant to high light as shown by reduced lipid peroxidation. This study advances a decisive step towards the utilization of plants for the production of high-value astaxanthin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据