4.7 Article

The Mediterranean evergreen Quercus ilex and the semi-deciduous Cistus albidus differ in their leaf gas exchange regulation and acclimation to repeated drought and re-watering cycles

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 62, 期 14, 页码 5207-5216

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/err233

关键词

Acclimation; drought-recovery cycles; mesophyll and stomatal conductance; osmotic adjustment; photosynthetic limitation analysis; water use efficiency

资金

  1. Swiss National Science Foundation [PA00P3_126259]
  2. Spanish Ministry of Education and Research [BFU2008-1072-E/BFI]
  3. Swiss National Science Foundation (SNF) [PA00P3_126259] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Plants may exhibit some degree of acclimation after experiencing drought, but physiological adjustments to consecutive cycles of drought and re-watering (recovery) have scarcely been studied. The Mediterranean evergreen holm oak (Q. ilex) and the semi-deciduous rockrose (C. albidus) showed some degree of acclimation after the first of three drought cycles (S1, S2, and S3). For instance, during S2 and S3 both species retained higher relative leaf water contents than during S1, despite reaching similar leaf water potentials. However, both species showed remarkable differences in their photosynthetic acclimation to repeated drought cycles. Both species decreased photosynthesis to a similar extent during the three cycles (20-40% of control values). However, after S1 and S2, photosynthesis recovered only to 80% of control values in holm oak, due to persistently low stomatal (g(s)) and mesophyll (g(m)) conductances to CO(2). Moreover, leaf intrinsic water use efficiency (WUE) was kept almost constant in this species during the entire experiment. By contrast, photosynthesis of rockrose recovered almost completely after each drought cycle (90-100% of control values), while the WUE was largely and permanently increased (by 50-150%, depending on the day) after S1. This was due to a regulation which consisted in keeping g(s) low (recovering to 50-60% of control values after re-watering) while maintaining a high g(m) (even exceeding control values during re-watering). While the mechanisms to achieve such particular regulation of water and CO(2) diffusion in leaves are unknown, it clearly represents a unique acclimation feature of this species after a drought cycle, which allows it a much better performance during successive drought events. Thus, differences in the photosynthetic acclimation to repeated drought cycles can have important consequences on the relative fitness of different Mediterranean species or growth forms within the frame of climate change scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据