4.7 Article

Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 61, 期 1, 页码 143-156

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erp289

关键词

Anther; high temperature; pollen; proteomics; rice; spikelet fertility

资金

  1. Felix Scholarship
  2. University of Reading and The International Rice Research Institute
  3. Natural Environment Research Council [ncas10009] Funding Source: researchfish

向作者/读者索取更多资源

Episodes of high temperature at anthesis, which in rice is the most sensitive stage to temperature, are expected to occur more frequently in future climates. The morphology of the reproductive organs and pollen number, and changes in anther protein expression, were studied in response to high temperature at anthesis in three rice (Oryza sativa L.) genotypes. Plants were exposed to 6 h of high (38 degrees C) and control (29 degrees C) temperature at anthesis and spikelets collected for morphological and proteomic analysis. Moroberekan was the most heat-sensitive genotype (18% spikelet fertility at 38 degrees C), while IR64 (48%) and N22 (71%) were moderately and highly heat tolerant, respectively. There were significant differences among the genotypes in anther length and width, apical and basal pore lengths, apical pore area, and stigma and pistil length. Temperature also affected some of these traits, increasing anther pore size and reducing stigma length. Nonetheless, variation in the number of pollen on the stigma could not be related to measured morphological traits. Variation in spikelet fertility was highly correlated (r=0.97, n=6) with the proportion of spikelets with >= 20 germinated pollen grains on the stigma. A 2D-gel electrophoresis showed 46 protein spots changing in abundance, of which 13 differentially expressed protein spots were analysed by MS/MALDI-TOF. A cold and a heat shock protein were found significantly up-regulated in N22, and this may have contributed to the greater heat tolerance of N22. The role of differentially expressed proteins and morphology during anther dehiscence and pollination in shaping heat tolerance and susceptibility is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据