4.7 Article

Identification of candidate genes affecting δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 60, 期 13, 页码 3715-3726

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erp210

关键词

Chalcone synthase; glandular trichome; hemp; hop; Humulus lupulus; marijuana; polyketide synthase; trichomes

资金

  1. University of Minnesota College of Biological Sciences
  2. University of Minnesota Life Sciences Summer
  3. Samuel Roberts Noble Foundation
  4. Minnesota Agricultural Experiment Station
  5. Packard Fellowship in Science and Engineering
  6. National Institute on Drug Abuse [N01DA-5-7746]

向作者/读者索取更多资源

RNA isolated from the glands of a delta(9)-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary metabolites to THCA were identified. Quantitative PCR analysis suggested that many of the pathway genes are preferentially expressed in the glands. Hexanoyl-CoA, one of the metabolites required for THCA synthesis, could be made via either de novo fatty acids synthesis or via the breakdown of existing lipids. qPCR analysis supported the de novo pathway. Many of the ESTs encode transcription factors and two putative MYB genes were identified that were preferentially expressed in glands. Given the similarity of the Cannabis MYB genes to those in other species with known functions, these Cannabis MYBs may play roles in regulating gland development and THCA synthesis. Three candidates for the polyketide synthase (PKS) gene responsible for the first committed step in the pathway to THCA were characterized in more detail. One of these was identical to a previously reported chalcone synthase (CHS) and was found to have CHS activity. All three could use malonyl-CoA and hexanoyl-CoA as substrates, including the CHS, but reaction conditions were not identified that allowed for the production of olivetolic acid (the proposed product of the PKS activity needed for THCA synthesis). One of the PKS candidates was highly and specifically expressed in glands (relative to whole leaves) and, on the basis of these expression data, it is proposed to be the most likely PKS responsible for olivetolic acid synthesis in Cannabis glands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据