4.7 Article

Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 60, 期 7, 页码 2155-2167

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erp089

关键词

Diffusion; lignin; Oryza sativa; outer part of root; radial oxygen loss; suberin; transport; waterlogging

资金

  1. Alexander-von-Humboldt Foundation

向作者/读者索取更多资源

Radial oxygen loss (ROL) and root porosity of rice (Oryza sativa L.) plants grown in either aerated or deoxygenated (stagnant) conditions were combined for the first time with extensive histochemical and biochemical studies of the apoplastic barriers in the roots' peripheral cell layers. Growth in stagnant solution significantly affected structural and, consequently, the physiological features of rice roots. It increased adventitious root porosity by about 20% and decreased the ROL towards the base to zero at a distance of 40 mm from the apex. By contrast, roots of plants grown in aerated solutions revealed the highest rates of ROL at 30 mm from the apex. Differences in the ROL pattern along the root were related to histochemical studies, which showed an early development of Casparian bands and suberin lamellae in the exodermis, and lignified sclerenchyma cells in roots of plants grown in deoxygenated solution. In agreement with anatomical studies, absolute contents of suberin and lignin in the outer part of the roots (OPR) were higher in plants grown in deoxygenated solution. Regardless of growth conditions, the levels of suberin and lignin increased along the roots towards the base. It is concluded that radial oxygen loss can be effectively restricted by the formation of a suberized exodermis and/or lignified sclerenchyma in the OPR. However, the relative contribution of suberin and lignin in the formation of a tight barrier is unclear. Knowing the permeability coefficient across OPR for roots of plants grown in both conditions will allow a more precise understanding of the mechanisms controlling ROL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据