4.5 Article

Genetic knockdown of a single organic anion transporter alters the expression of functionally related genes in Malpighian tubules of Drosophila melanogaster

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 215, 期 15, 页码 2601-2610

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.071100

关键词

organic anion transport; methotrexate; multidrug resistance-associated protein; MRP; organic anion transporting polypeptide; OATP; RNAi; P-element insertion mutation; remote sensing and signalling hypothesis

类别

资金

  1. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Insects excrete a wide variety of toxins via the Malpighian (renal) tubules. Previous studies have implicated three transporters in the secretion of the organic anion (OA) methotrexate (MTX) by the Drosophila Malpighian tubule: Drosophila multidrug resistance-associated protein (dMRP, CG6214), a multidrug efflux transporter (MET, CG30344), and an organic anion transporting polypeptide 58Dc (OATP58Dc, CG3380). RNA interference (RNAi) knockdown and P-element insertion mutation of single OA transporter genes were used to evaluate the importance of these three putative transporters in the secretion of MTX by the Malpighian tubules of Drosophila melanogaster. A major finding is that genetic knockdown of a single OA transporter gene leads to reductions in the expression of at least one other OA transporter gene and in secretion of MTX by Malpighian tubules isolated from flies reared on a standard diet. The pattern of changes indicates that decreases in MTX secretion do not correspond to decreases in dMRP expression in all of the RNAi lines. Genetic knockdown of a single OA transporter gene also alters the extent of upregulation of multiple OA transporter genes in the tubules in response to dietary MTX. Knockdown of dMRP is associated with a decrease in MET expression but an increase in OATP expression when flies are reared on MTX-enriched diet. Our results indicate that dMRP and MET are not the dominant MTX transporters in the tubules when flies are reared on MTX-enriched diets. At least one additional transporter, and possibly OATP, are required for MTX secretion. The implications of our results for studies using genetic knockdown techniques to identify OA transporters in whole tissues such as Malpighian tubules are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据