4.5 Article

Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 215, 期 19, 页码 3501-3512

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.071993

关键词

fluorescent protein; resilin; locomotion; muscle; Schistocerca gregaria

类别

资金

  1. Marshall Sherfield Commission
  2. Human Frontiers Research Program

向作者/读者索取更多资源

Locusts jump and kick by using a catapult mechanism in which energy is first stored and then rapidly released to extend the large hind legs. The power is produced by a slow contraction of large muscles in the hind femora that bend paired semi-lunar processes in the distal part of each femur and store half the energy needed for a kick. We now show that these energy storage devices are composites of hard cuticle and the rubber-like protein resilin. The inside surface of a semi-lunar process consists of a layer of resilin, particularly thick along an inwardly pointing ridge and tightly bonded to the external, black cuticle. From the outside, resilin is visible only as a distal and ventral triangular area that tapers proximally. High-speed imaging showed that the semi-lunar processes were bent in all three dimensions during the prolonged muscular contractions that precede a kick. To reproduce these bending movements, the extensor tibiae muscle was stimulated electrically in a pattern that mimicked the normal sequence of its fast motor spikes recorded in natural kicking. Externally visible resilin was compressed and wrinkled as a semilunar process was bent. It then sprung back to restore the semi-lunar process rapidly to its original natural shape. Each of the five nymphal stages jumped and kicked and had a similar distribution of resilin in their semi-lunar processes as adults; the resilin was shed with the cuticle at each moult. It is suggested that composite storage devices that combine the elastic properties of resilin with the stiffness of hard cuticle allow energy to be stored by bending hard cuticle over only a small distance and without fracturing. In this way all the stored energy is returned and the natural shape of the femur is restored rapidly so that a jump or kick can be repeated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据