4.5 Article

Physical gills prevent drowning of many wetland insects, spiders and plants

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 215, 期 5, 页码 705-709

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.065128

关键词

air film; air layer; gas film; gas layer; plastron; respiration; superhydrophobic surfaces

类别

资金

  1. Centre for Lake Restoration
  2. Villum Kann Rasmussen Centre of Excellence
  3. Danish Council for Independent Research - Natural Sciences [09-072482]

向作者/读者索取更多资源

Insects, spiders and plants risk drowning in their wetland habitats. The slow diffusion of O-2 can cause asphyxiation when underwater, as O-2 supply cannot meet respiratory demands. Some animals and plants have found a common solution to the major challenge: how to breathe underwater with respiratory systems evolved for use in air? Hydrophobic surfaces on their bodies possess gas films that act as a 'physical gill' to collect O-2 when underwater and thus sustain respiration. In aquatic insects, this feature/process has been termed 'plastron respiration'. Here, we demonstrate the similarities in function between underwater respiration of insect (Aphelocheirus aestivalis) plastrons and gas films on leaves of wetland plants (Phalaris arundinacea) and also show the importance of these physical gills by the resulting changes upon their removal. The gas films provide an enlarged gas-water interface to enhance O-2 uptake underwater that is above that if only spiracles (insects) or stomata (plants) provided the gas-phase contact with the water. Body-surface gas films contribute to the survival of many insects, spiders and plants in aquatic and flood-prone environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据