4.5 Article

The shallow turn of a worm

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 214, 期 9, 页码 1554-1559

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.052092

关键词

Caenorhabditis elegans; turning behavior; off-food navigation

类别

资金

  1. National Research Foundation (NRF) [2010-0016886]

向作者/读者索取更多资源

When crawling on a solid surface, the nematode Caenorhabditis elegans (C. elegans) moves forward by propagating sinusoidal dorso-ventral retrograde contraction waves. A uniform propagating wave leads to motion that undulates about a straight line. When C. elegans turns as it forages or navigates its environment, it uses several different strategies of reorientation. These modes include the well-known omega turn, in which the worm makes a sharp angle turn forming an Omega-shape, and the reversal, in which the worm draws itself backwards. In these two modes of reorientation, C. elegans strongly disrupts its propagating sinusoidal wave, either in form or in direction, leading to abrupt directional change. However, a third mode of reorientation, the shallow turn, involves a gentler disruption of the locomotory gait. Analyzing the statistics of locomotion suggests that the shallow turn is by far the most frequent reorienting maneuver in navigation in the absence of food. We show that the worm executes a shallow turn by modulating the amplitude and wavelength of its curvature during forward movement, and provide a minimal description of the process using a three-parameter mathematical model. The results of our study augment the understanding of how these parameters are controlled at the neuromotor circuit level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据