4.5 Article

Changes in wingstroke kinematics associated with a change in swimming speed in a pteropod mollusk, Clione limacina

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 214, 期 23, 页码 3935-3947

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.058461

关键词

Clione limacina; flapping flight; kinematics; pteropod; speed change; swimming

类别

资金

  1. National Science Foundation IGERT

向作者/读者索取更多资源

In pteropod mollusks, the gastropod foot has evolved into two broad, wing-like structures that are rhythmically waved through the water for propulsion. The flexibility of the wings lends a tremendous range of motion, an advantage that could be exploited when changing locomotory speed. Here, we investigated the kinematic changes that take place during an increase in swimming speed in the pteropod mollusk Clione limacina. Clione demonstrates two distinct swim speeds: a nearly constant slow swimming behavior and a fast swimming behavior used for escape and hunting. The neural control of Clione's swimming is well documented, as are the neuromuscular changes that bring about Clione's fast swimming. This study examined the kinematics of this swimming behavior at the two speeds. High speed filming was used to obtain 3D data from individuals during both slow and fast swimming. Clione's swimming operates at a low Reynolds number, typically under 200. Within a given swimming speed, we found that wing kinematics are highly consistent from wingbeat to wingbeat, but differ between speeds. The transition to fast swimming sees a significant increase in wing velocity and angle of attack, and range of motion increases as the wings bend more during fast swimming. Clione likely uses a combination of drag-based and unsteady mechanisms for force production at both speeds. The neuromuscular control of Clione's speed change points to a two-gaited swimming behavior, and we consider the kinematic evidence for Clione's swim speeds being discrete gaits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据