4.5 Article

Biomechanics of locomotion in Asian elephants

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 213, 期 5, 页码 694-706

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.035436

关键词

elephant; locomotion; biomechanics; speed; gait

类别

资金

  1. Belgian Fonds National de la Recherche Scientifique
  2. Belgian Fonds Special de Recherche

向作者/读者索取更多资源

Elephants are the biggest living terrestrial animal, weighing up to five tons and measuring up to three metres at the withers. These exceptional dimensions provide certain advantages (e.g. the mass-specific energetic cost of locomotion is decreased) but also disadvantages (e.g. forces are proportional to body volume while supportive tissue strength depends on their cross-sectional area, which makes elephants relatively more fragile than smaller animals). In order to understand better how body size affects gait mechanics the movement of the centre of mass (COM) of 34 Asian elephants (Elephas maximus) was studied over their entire speed range of 0.4-5.0 m s(-1) with force platforms. The mass-specific mechanical work required to maintain the movements of the COM per unit distance is similar to 0.2 J kg(-1) m(-1) (about 1/3 of the average of other animals ranging in size from a 35 g kangaroo rat to a 70 kg human). At low speeds this work is reduced by a pendulum-like exchange between the kinetic and potential energies of the COM, with a maximum energy exchange of similar to 60% at 1.4 m s(-1). At high speeds, elephants use a bouncing mechanism with little exchange between kinetic and potential energies of the COM, although without an aerial phase. Elephants increase speed while reducing the vertical oscillation of the COM from about 3 cm to 1 cm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据