4.5 Article

Inhibition of glutamine synthetase during ammonia exposure in rainbow trout indicates a high reserve capacity to prevent brain ammonia toxicity

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 213, 期 13, 页码 2343-2353

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.039156

关键词

glutamate; glutamine; MSOX; alanine; tryptophan; stress

类别

资金

  1. NSERC

向作者/读者索取更多资源

Glutamine synthetase (GSase), the enzyme that catalyses the conversion of glutamate and ammonia to glutamine, is present at high levels in vertebrate brain tissue and is thought to protect the brain from elevated ammonia concentrations. We tested the hypothesis that high brain GSase activity is critical in preventing accumulation of brain ammonia and glutamate during ammonia loading in the ammonia-intolerant rainbow trout. Trout pre-injected with saline or the GSase inhibitor methionine sulfoximine (MSOX, 6 mg kg(-1)), were exposed to 0, 670 or 1000 mu mol l(-1) NH4Cl in the water for 24 and 96 h. Brain ammonia levels were 3- to 6-fold higher in ammonia-exposed fish relative to control fish and MSOX treatment did not alter this. Brain GSase activity was unaffected by ammonia exposure, while MSOX inhibited GSase activity by similar to 75%. Brain glutamate levels were lower and glutamine levels were higher in fish exposed to ammonia relative to controls. While MSOX treatment had little impact on brain glutamate, glutamine levels were significantly reduced by 96 h. With ammonia treatment, significant changes in the concentration of multiple other brain amino acids occurred and these changes were mostly reversed or eliminated with MSOX. Overall the changes in amino acid levels suggest that multiple enzymatic pathways can supply glutamate for the production of glutamine via GSase during ammonia exposure and that alternative transaminase pathways can be recruited for ammonia detoxification. Plasma cortisol levels increased 7- to 15-fold at 24h in response to ammonia and MSOX did not exacerbate this stress response. These findings indicate that rainbow trout possess a relatively large reserve capacity for ammonia detoxification and for preventing glutamate accumulation during hyperammonaemic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据