4.5 Article

Effects of temperature and dietary sterol availability on growth and cholesterol allocation of the aquatic keystone species Daphnia

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 212, 期 19, 页码 3051-3059

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.031401

关键词

allocation strategy; cholesterol; growth; reproduction; temperature adaptation; zooplankton

类别

资金

  1. German Research Foundation (DFG) [WA 2445/3-1]

向作者/读者索取更多资源

Enhanced water temperatures promote the occurrence of cyanobacterial blooms, which may be detrimental to aquatic herbivores. Especially, the often-dominant crustaceans could be negatively affected because cyanobacteria are deficient in phytosterols, which are required by the crustaceans to form the membrane component cholesterol, which in turn plays a role in thermal adaptation. Here, we determined the influence of temperature on growth, reproduction and the allocation of dietary sterol into somatic tissues and eggs of the keystone species Daphnia magna raised along a dietary cholesterol gradient. Mass-specific growth rates of D. magna increased with the increasing availability of dietary cholesterol up to an incipient limiting level, which increased with increasing temperature. This indicates a higher demand for cholesterol for growth at higher temperatures and may explain the consistently smaller clutch sizes of reproducing females at the highest temperature. The cholesterol content of the individuals increased with increasing dietary cholesterol; this increase was enhanced at higher temperatures, indicating a higher demand for cholesterol for tissues and probably specifically for membranes. Surprisingly, the daphnids showed different allocation strategies with regard to temperature and dietary sterol availability. The cholesterol content of eggs was enhanced at higher temperature, which suggested that females allocate more cholesterol to their offspring, presumably to ensure sufficient egg development. When dietary cholesterol was limiting, however, females did not allocate more cholesterol to their eggs. Our data suggest that during cyanobacterial blooms, a potential dietary sterol limitation of Daphnia can be intensified at higher water temperatures, which can occur with global warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据