4.5 Article

The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 211, 期 12, 页码 1937-1947

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.014217

关键词

-

类别

向作者/读者索取更多资源

The silk that orb-weaving spiders produce for use as dragline and for the frame of the web is spun from the major ampullate ( MA) glands, and it is renowned for its exceptional toughness. The fibroins that make up MA silk have previously been organized into two major groupings, spidroin-1 and spidroin-2, based largely on differences in amino acid sequence. The most apparent difference between spidroin-1 and spidroin-2 fibroins is the lack of proline in spidroin-1. The MA silk of Araneus diadematus comprises two spidroin-2 fibroins, and is therefore proline-rich, whereas spidroin-1 is preferentially expressed in Nephila clavipes MA silk, and so this silk is proline deficient. Together, these two silks provide a system for testing the consequences of proline-rich and proline-deficient fibroin networks. This study measures the mechanical and optical properties of dry and hydrated Araneus and Nephila MA silks. Since proline acts to disrupt secondary structure, it is hypothesized that the fibroin network of Araneus MA silk will contain less secondary structure than the network of Nephila MA silk. Mechanical and optical studies clearly support this hypothesis. Although the dry properties of these two silks are indistinguishable, there are large differences between the hydrated silks. Nephila silk does not swell upon hydration to the same degree as Araneus silk. In addition, upon hydration, Nephila MA silk retains more of its initial dry stiffness, and retains more molecular order, as indicated by birefringence measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据