4.5 Article

Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 212, 期 2, 页码 155-162

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.019232

关键词

tree frog; adhesion; electron microscopy; atomic force microscopy; effective elastic modulus; tribology

类别

向作者/读者索取更多资源

Knowledge of both surface structure and physical properties such as stiffness and elasticity are essential to understanding any adhesive system. In this study of an adhesion surface in the tree frog, Litoria caerulea White, a variety of techniques including atomic force microscopy were used to investigate the microstructure and properties of an epithelium that adheres through wet adhesion. Litoria toe pads consist of a hexagonal array of flat-topped epithelial cells, separated by mucus-filled channels. Under an atomic force microscope, this. 'flat' surface is highly structured at the nanoscale, consisting of a tightly packed array of columnar nanopillars (described as hemidesmosomes by previous authors), 326 +/- 84 nm in diameter, each of which possesses a central dimple 8 +/- 4 nm in depth. In fixed tissue (transmission electron microscopy), the nanopillars are approximately as tall as they are broad. At the gross anatomical level, larger toe pads may be subdivided into medial and lateral parts by two large grooves. Although the whole toe pad is soft and easily deformable, the epithelium itself has an effective elastic modulus equivalent to silicon rubber (mean E-eff = 14.4 +/- 20.9 MPa; median E-eff = 5.7 MPa), as measured by the atomic force microscope in nanoindentation mode. The functions of these structures are discussed in terms of maximising adhesive and frictional forces by conforming closely to surface irregularities at different length scales and maintaining an extremely thin fluid layer between pad and substrate. The biomimetic implications of these findings are reviewed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据