4.2 Article

Efficient visible light photo-Fenton-like degradation of organic pollutants using in situ surface-modified BiFeO3 as a catalyst

期刊

JOURNAL OF ENVIRONMENTAL SCIENCES
卷 25, 期 6, 页码 1213-1225

出版社

SCIENCE PRESS
DOI: 10.1016/S1001-0742(12)60172-7

关键词

nanoscale BiFeO3; visible light; photo-Fenton-like catalysis; degradation; surface modification

资金

  1. National Science Foundation of China [21077037, 21177044, 81030051]

向作者/读者索取更多资源

The visible light photo-Fenton-like catalytic performance of BiFeO3 nanoparticles was investigated using Methyl Violet (MV), Rhodamine B (RhB) and phenol as probes. Under optimum conditions, the pseudo first-order rate constant (k) was determined to be 2.21 x 10(-2), 5.56 x 10(-2) and 2.01 x 10(-2) min(-1) for the degradation of MV (30 mu mol/L), RhB (10 mu mol/L) and phenol (3 mmol/L), respectively, in the BiFeO3-H2O2-visible light (Vis) system. The introduction of visible light irradiation increased the k values of MV, RhB and phenol degradation 3.47, 1.95 and 2.07 times in comparison with those in dark. Generally, the k values in the BiFeO3-H2O2-Vis system were accelerated by increasing BiFeO3 load and H2O2 concentration, but decreased with increasing initial pollutant concentration. To further enhance the degradation of pollutants at high concentrations, BiFeO3 was modified with the addition of surface modifiers. The addition of ethylenediamineteraacetic acid (EDTA, 0.4 mmol/L) increased the k value of MV degradation (60 mu mol/L) from 1.01 x 10(-2) min(-1) in the BiFeO3-H2O2-Vis system to 1.30 min(-1) in the EDTA-BiFeO3-H2O2-Vis system by a factor of 128. This suggests that in situ surface modification can enable BiFeO3 nano-particles to be a promising visible light photo-Fenton-like catalyst for the degradation of organic pollutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据