4.2 Article

Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10934529.2014.951264

关键词

bioleaching; spent refinery catalyst; response surface methodology; Acidithiobacilli

资金

  1. Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT, and Future Planning

向作者/读者索取更多资源

A central composite design (CCD) combined with response surface methodology (RSM) was employed for maximizing bioleaching yields of metals (Al, Mo, Ni, and V) from as-received spent refinery catalyst using Acidithiobacillus thiooxidans. Three independent variables, namely initial pH, sulfur concentration, and pulp density were investigated. The pH was found to be the most influential parameter with leaching yields of metals varying inversely with pH. Analysis of variance (ANOVA) of the quadratic model indicated that the predicted values were in good agreement with experimental data. Under optimized conditions of 1.0% pulp density, 1.5% sulfur and pH 1.5, about 93% Ni, 44% Al, 34% Mo, and 94% V was leached from the spent refinery catalyst. Among all the metals, V had the highest maximum rate of leaching (Vmax) according to the Michaelis-Menten equation. The results of the study suggested that two-step bioleaching is efficient in leaching of metals from spent refinery catalyst. Moreover, the process can be conducted with as received spent refinery catalyst, thus making the process cost effective for large-scale applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据