4.0 Review

Chemical techniques for assessing bioavailability of sediment-associated contaminants: SPME versus Tenax extraction

期刊

JOURNAL OF ENVIRONMENTAL MONITORING
卷 13, 期 4, 页码 792-800

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0em00587h

关键词

-

资金

  1. Hundred Talents Program [kzcx2-yw-BR-05]
  2. National Natural Science Foundation of China [40971263, 40821003]

向作者/读者索取更多资源

The traditional approach for predicting the risk of hydrophobic organic contaminants (HOCs) in sediment is to relate organic carbon normalized sediment concentrations to body residues or toxic effects to organisms. However, due to the multiple variables controlling bioavailability, this method has limitations. A matrix independent method of predicting bioavailability needs to be used in order to be universally applicable. Both chemical activity (freely dissolved chemical concentrations) measured by solid-phase microextraction (SPME) and bioaccessibility (rapidly desorbing fraction) estimated by Tenax extraction have been developed to predict bioavailability of sediment-associated HOCs. The objectives of this review are to summarize a number of studies using matrix-SPME or Tenax extraction to estimate bioavailability and/or toxicity of different classes of HOCs and evaluate the strengths and weakness of these two techniques. Although the two chemical techniques assess different components of the matrix, estimates obtained from both techniques have been correlated to organism body residues. The advantages of SPME fibers are their applicability for use in situ and their potential usage for a wide array of contaminants by selection of appropriate coatings. Single time-point Tenax extraction, however, is more time-and labor-effective. Tenax extraction also has lower detection limits, making it more applicable for highly toxic contaminants. This review also calls for additional research to evaluate the role of sequestrated contaminants and ingestion of sediment particles by organisms on HOC bioavailability. The use of performance reference compounds to reduce SPME sampling time and linking chemical based bioavailability estimates to toxicological endpoints are essential to expand the applications of these methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据