4.7 Article

Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 137, 期 -, 页码 23-35

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2014.02.008

关键词

Floating treatment wetland; Urban retention pond; Non-point source pollution; Nutrient control; Temperature effects; Stormwater

资金

  1. National Fish and Wildlife Foundation

向作者/读者索取更多资源

The application of floating treatment wetlands (FTWs) in point and non-point source pollution control has received much attention recently. Although the potential of this emerging technology is supported by various studies, quantifying FTW performance in urban retention ponds remains elusive due to significant research gaps. Actual urban retention pond water was utilized in this mesocosm study to evaluate phosphorus and nitrogen removal efficiency of FTWs. Multiple treatments were used to investigate the contribution of each component in the FTW system with a seven-day retention time. The four treatments included a control, floating mat, pickerelweed (Pontederia cordata L), and softstem bulrush (Schoenoplectus tabernaemontani). The water samples collected on Day 0 (initial) and 7 were analyzed for total phosphorus (TP), total particulate phosphorus, orthophosphate, total nitrogen (TN), organic nitrogen, ammonia nitrogen, nitrate-nitrite nitrogen, and chlorophyll-a. Statistical tests were used to evaluate the differences between the four treatments. The effects of temperature on TP and TN removal rates of the FTWs were described by the modified Arrhenius equation. Our results indicated that all three FTW designs, planted and unplanted floating mats, could significantly improve phosphorus and nitrogen removal efficiency (%, E-TP and E-TN) compared to the control treatment during the growing season, i.e., May through August. The E-TP and E-TN was enhanced by 8.2% and 18.2% in the FTW treatments planted with the pickerelweed and softstem bulrush, respectively. Organic matter decomposition was likely to be the primary contributor of nutrient removal by FTWs in urban retention ponds. Such a mechanism is fostered by microbes within the attached biofilms on the floating mats and plant root surfaces. Among the results of the four treatments, the FTWs planted with pickerelweed had the highest E-TP, and behaved similarly with the other two FTW treatments for nitrogen removal during the growth period. The temperature effects described by the modified Arrhenius equation revealed that pickerelweed is sensitive to temperature and provides considerable phosphorus removal when water temperature is greater than 25 C. However, the nutrient removal effectiveness of this plant species may be negligible for water temperatures below 15 C. The study also assessed potential effects of shading from the FTW mats on water temperature, DO, pH, and attached-to-substrate periphyton/vegetation. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据