4.7 Article

Remediation to improve infiltration into compact soils

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 117, 期 -, 页码 85-95

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2012.10.057

关键词

Urban stormwater runoff; Soil remediation; Saturated hydraulic conductivity; Soil strength; Bulk density; Infiltration; Tilling; Compost

资金

  1. Minnesota Pollution Control Agency (MPCA)
  2. Center for Urban and Regional Affairs (CURA)
  3. Three Rivers Park District, Minnesota
  4. J.S. Braun/Braun Intertec Professorship Award

向作者/读者索取更多资源

Urban development usually involves soil compaction through converting large pervious land into developed land. This change typically increases runoff during runoff events and consequently may add to flooding and additional volume of runoff. The wash off of pollutants may also create numerous water quality and environmental problems for receiving waters. To alleviate this problem many municipalities are considering low impact development. One technique to reduce runoff in an urban area is to improve the soil infiltration. This study is specifically undertaken to investigate tilling and compost addition to improve infiltration rate, and to investigate measurement tools to assess the effectiveness of remediated soil. Soil remediation was performed at three sites in an urban area metropolitan area. Each site was divided into three plots: tilled, tilled with compost addition, and a control plot with no treatment. The infiltration effectiveness within each plot was assessed by measuring saturated hydraulic conductivity (K-sat) using the modified Philip Dunne (MPD) infiltrometer during pre- and post-treatment. In addition, the use of soil bulk density and soil strength as surrogate parameters for K-sat was investigated. Results showed that deep tillage was effective at reducing the level of soil strength. Soil strength was approximately half that of the control plot in the first six inches of soil. At two of the sites, tilling was also ineffective at improving the infiltration capacity of the soil. The geometric mean of K-sat was 0.5-2.3 times that of the control plot, indicating little overall improvement. Compost addition was more effective than tilling by reducing the soil strength and compaction and increasing soil infiltration. The geometric mean of K-sat on the compost plots was 2.7-5.7 times that of the control plot. No strong correlations were observed before remediation between either soil bulk density or soil strength and K-sat. Simulation results showed that the amount of runoff generated from a selection of design storms for treated soil was less than for untreated soil. The results presented in this study may be used as guidance for urban hydromodification and stormwater management plans. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据