4.2 Article

Oxidative and Reductive Pathways in Iron-Ethylenediaminetetraacetic Acid-Activated Persulfate Systems

期刊

JOURNAL OF ENVIRONMENTAL ENGINEERING
卷 138, 期 4, 页码 411-418

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)EE.1943-7870.0000496

关键词

-

向作者/读者索取更多资源

The iron (II)-ethylenediaminetetraacetic acid (EDTA) and iron (III)-EDTA activation of persulfate was compared using reactant-specific probe compounds: the combined sulfate radical and hydroxyl radical probe anisole, the hydroxyl radical probe nitrobenzene, and the reductant/nucleophile probe hexachloroethane. Iron (II)-EDTA and iron (III)-EDTA were equally effective for activating persulfate decomposition and for generating reductants/nucleophiles at pH 5, while iron (III)-EDTA was a more effective activator than iron (II)-EDTA for generating oxidants. Use of the combined sulfate radical and hydroxyl radical scavenger isopropanol and the hydroxyl radical scavenger tert-butanol demonstrated that approximately 86 and 73% of the oxidation activity in iron (II)-EDTA and iron (III)-EDTA-activated persulfate systems, respectively, was attributable to hydroxyl radical activity. The generation of hydroxyl radical in iron-EDTA-activated persulfate systems at pH 5 was confirmed using electron spin resonance spectroscopy. The results of these pathway analyses, in conjunction with confirmation of the results using the common groundwater contaminant trichloroethylene (TCE), show that iron (II)-EDTA and iron (III)-EDTA-activated persulfate may be an effective system for the in situ remediation of contaminated groundwater. DOI: 10.1061/(ASCE)EE.1943-7870.0000496. (C) 2012 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据