4.2 Article

Lifting line theory for wing-in-ground effect in proximity to a free surface

期刊

JOURNAL OF ENGINEERING MATHEMATICS
卷 74, 期 1, 页码 143-158

出版社

SPRINGER
DOI: 10.1007/s10665-011-9497-x

关键词

Free surface; Green's function; Lifting line theory; Wing-in-ground effect

资金

  1. National Natural Science Foundation of China [50921001]
  2. National Key Basic Research Special Foundation of China [2010CB832704]

向作者/读者索取更多资源

Although it has some limitations in applications, the classical Prandtl lifting line theory remains a standard methodology for evaluating lifting problems in free space. It is of theoretical interest in revealing lifting mechanisms. It is therefore, interesting to generalize the classical lifting line theory to cases more general than just the free space problem. In this article, we present the Prandtl lifting line theory for wing-in-ground effect (WIG) near a free surface. While, the fundamental methodology being similar to the classical lifting line theory, it turns out that the difficulty lies in finding the three-dimensional Green's function for the system of horseshoe vortices operating over the deformable free surface. Linear free surface boundary conditions are applied to deal with the two-dimensional lifting problem solved by the singularity distribution method and the three-dimensional correction found by placing a system of horseshoe vortices on the wing. This approach was validated against published data. Excellent agreement is found among results obtained from this study, experiments and numerical simulations. Extensive numerical examples are carried out to show the features of lift coefficients in the vicinity of a free surface. As expected, the free surface can be represented by a rigid wall for the case of high velocity. Finally, the free surface effect on WIG is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据