4.3 Article

The Effect of Particle Size and Film Cooling on Nozzle Guide Vane Deposition

出版社

ASME
DOI: 10.1115/1.4007057

关键词

-

资金

  1. U.S. Department of Energy (NETL)

向作者/读者索取更多资源

An accelerated deposition test facility is used to study the effect of particle size and film cooling on deposit roughness, spatial distribution, and thickness. Tests were run at gas turbine representative inlet Mach numbers (0.08) and temperatures (1080 degrees C). Deposits were created from a subbituminous coal fly ash with mass median diameters from 4 to 16 micron (Stokes numbers ranging from 0.1 to 1.9). Two CFM56-5B nozzle guide vane doublets comprising three full passages and two half passages of flow were utilized as the test articles. Tests were run with three levels of film cooling. The addition of film cooling to the vanes was shown to decrease the deposit capture efficiency by as much as a factor of 3 and shift the primary location of deposit buildup to the leading edge, coincident with an increased region of positive cooling backflow margin. Video taken during the tests noted that film cooling holes with a negative backflow margin were primary areas of deposit formation, regardless of the film cooling percentage. The Stokes number was shown to have a marked effect on the vane capture efficiency, with the largest Stokes number ash (St = 1.9) approximately 3 times as likely to stick to the vane as the smallest Stokes number ash (St = 0.1). Posttest observations on the deposit thickness were made using a coordinate measurement machine. The deposit thickness was noted to be reduced with a decreasing Stokes number and an increased film cooling percentage. The deposit surface roughness falls with particle size but is only weakly dependent on the cooling level. [DOI: 10.1115/1.4007057]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据