4.3 Article

Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor

出版社

ASME
DOI: 10.1115/1.3204532

关键词

-

向作者/读者索取更多资源

Flame transfer function measurements of turbulent premixed flames are made in a model lean-premixed, swirl-stabilized, gas turbine combustor. OH*, CH*, and CO2* chemiluminescence emissions are measured to determine heat release oscillation from a whole flame, and the two-microphone technique is used to measure inlet velocity fluctuation. 2D CH* chemiluminescence imaging is used to characterize the flame shape: the flame length (L-CH* (max)) and flame angle (alpha). Using H-2-natural gas composite fuels, X-H2 = 0.00-0.60, a very short flame is obtained and hydrogen enrichment of natural gas is found to have a significant impact on the flame structure and flame attachment points. For a pure natural gas flame, the flames exhibit a V structure, whereas H-2-enriched natural gas flames have an M structure. Results show that the gain of M flames is much smaller than that of V flames. Similar to results of analytic and experimental investigations on the flame transfer function of laminar premixed flames, it shows that the dynamics of a turbulent premixed flame is governed by three relevant parameters: the Strouhal number (St = L-CH* (max)/L-conv), the flame length (L-CH* (max)), and the flame angle (alpha). Two flames with the same flame shape exhibit very similar forced responses, regardless of their inlet flow conditions. This is significant because the forced flame response of a highly turbulent, practical gas turbine combustor can be quantitatively generalized using the nondimensional parameters, which collapse all relevant input conditions into the flame shape and the Strouhal number. [DOI: 10.1115/1.3204532]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据