4.5 Article

Collagen-binding Streptococcal Surface Proteins Influence the Susceptibility of Biofilm Cells to Endodontic Antimicrobial Solutions

期刊

JOURNAL OF ENDODONTICS
卷 39, 期 3, 页码 370-374

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.joen.2012.10.019

关键词

Antimicrobial; antiseptics; biofilm; collagen; endodontics; microbiology; streptococci

资金

  1. University at Buffalo School of Dental Medicine Department of Periodontics and Endodontics Student Research Funds

向作者/读者索取更多资源

Introduction: Previous studies have indicated that the antimicrobial efficacy of endodontic irrigants may be diminished in the presence of patient tissues and fluids. With Streptococcus gordonii as a model microorganism, we used a genetic approach to investigate the hypothesis that bacterial surface proteins with collagen-binding abilities may function to protect biofilm cells from antiseptics commonly used in root canal treatment. Methods: S. gordonii strain DL1 or isogenic mutant strains with deletions of genes encoding collagen-binding surface proteins were grown in microtiter plates to form 8-hour biofilms. Planktonic cells were aspirated, and the remaining biofilm cells were buffer-washed and then incubated with either pH-adjusted buffer or potentially protective solutions of type I collagen, serum, or saliva. Biofilms were rewashed, pulsed with sodium hypochlorite, chlorhexidine digluconate, or BioPure MTAD, and then rewashed. Fresh medium was added, and survivor cell growth was monitored for 24 hours. Results: Buffer-treated biofilm cells of all 3 strains were similarly killed by sodium hypochlorite, chlorhexidine digluconate, and MTAD. Collagen, serum, and saliva significantly protected strain DL1 from all 3 antiseptics compared with buffer-treated cells (P <= 0004). However, preincubation with collagen, serum, or saliva left both mutant strain biofilms significantly more susceptible to all 3 antiseptics than were respectively treated strain DL1 biofilms (P <= 005). Conclusions: Interactions of S. gordonii surface proteins with collagen or similar components in serum and saliva may play roles in protecting biofilm cells from endodontic antiseptics. Elucidating molecular mechanisms underlying bacterial resistance to antimicrobials may facilitate the development of more effective treatments. (J Endod 2013;39:370-374)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据