4.5 Article

Prolactin177, prolactin188 and prolactin receptor 2 in the pituitary of the euryhaline tilapia, Oreochromis mossambicus, are differentially osmosensitive

期刊

JOURNAL OF ENDOCRINOLOGY
卷 213, 期 1, 页码 89-98

出版社

BIOSCIENTIFICA LTD
DOI: 10.1530/JOE-11-0384

关键词

-

资金

  1. USDA National Institute of Food and Agriculture [2008-35206-18785, 2008-35206-18787]
  2. National Science Foundation [IOS-0517769, OISE-0852518, IOS-1119693]
  3. Division Of Integrative Organismal Systems
  4. Direct For Biological Sciences [1119693] Funding Source: National Science Foundation

向作者/读者索取更多资源

Two forms of prolactin (Prl), prolactin 177 (Prl(177)) and prolactin 188 (Prl(188)), are produced in the rostral pars distalis (RPD) of the pituitary gland of euryhaline Mozambique tilapia, Oreochromis mossambicus. Consistent with their roles in fresh water (FW) osmoregulation, release of both Prls is rapidly stimulated by hyposmotic stimuli, both in vivo and in vitro. We examined the concurrent dynamics of Prl177 and Prl188 hormone release and mRNA expression from Prl cells in response to changes in environmental salinity in vivo and to changes in extracellular osmolality in vitro. In addition, mRNA levels of Prl receptors 1 and 2 (prlr1 and prlr2) and osmotic stress transcription factor 1 (ostf1) were measured. Following transfer from seawater (SW) to FW, plasma osmolality decreased, while plasma levels of Prl177 and Prl188 and RPD mRNA levels of prl(177) and prl(188) increased. The opposite pattern was observed when fish were transferred from FW to SW. Moreover, hyposmotically induced release of Prl188 was greater in Prl cells isolated from FW-acclimated fish after 6 h of incubation, while the hyposmotically induced increase in prl188 mRNA levels was only observed in SW-acclimated fish. In addition, prlr2 and ostf1 mRNA levels in Prl cells from both FW- and SW-acclimated fish increased in direct proportion to increases in extracellular osmolality both in vivo and in vitro. Taken together, these results indicate that the osmosensitivity of the tilapia RPD is modulated by environmental salinity with respect to hormone release and gene expression. Journal of Endocrinology (2012) 213, 89-98

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据