4.1 Article

High-Accuracy Thermal Analysis Methodology for Semiconductor Junction Temperatures by Considering Line Patterns of Three-Dimensional Modules

期刊

JOURNAL OF ELECTRONIC PACKAGING
卷 131, 期 2, 页码 -

出版社

ASME
DOI: 10.1115/1.3103947

关键词

computational fluid dynamics; electronics packaging; modules; printed circuits; semiconductor junctions; thermal conductivity

向作者/读者索取更多资源

A novel computational fluid dynamics analysis method of predicting semiconductor junction temperatures precisely without modeling printed circuit board (PCB) line patterns was developed. First, PCBs are divided into multiple regions. The effective anisotropic thermal conductivity of each region is then assigned as follows. All the regions are divided into smaller subregions whose size is below the pattern width. The thermal conductivity of each subregion is defined by the property of the material at the center of the subregion. Next, a thermal circuit network composed of all the subregions is generated, and finally the anisotropic thermal conductivities of each region are computed by solving this thermal network matrix. When boards are divided into multiple regions, there is a convergence region size under which the analytical results show no further change. In this paper, the relationship between the size of the divided regions and the accuracy of the analytical results was investigated. It was confirmed that the calculated semiconductor junction temperatures were precisely coincident with the experimental results when the size of the regions was less than 20 times the line pattern width.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据