4.5 Article Proceedings Paper

Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides

期刊

JOURNAL OF ELECTRONIC MATERIALS
卷 40, 期 5, 页码 1271-1280

出版社

SPRINGER
DOI: 10.1007/s11664-011-1565-5

关键词

Natural superlattice; thermoelectric; misfit-layer compounds; thermal conductivity

向作者/读者索取更多资源

A natural superlattice with composition (SnS)(1.2)(TiS2)(2), built by intercalating a SnS layer into the van der Waals gap of layered TiS2, has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS)(1.2)(TiS2)(2) is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX)(1+x) (TX2) (n) (M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se; n = 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据