4.7 Article

CO monolayer oxidation at Pt(100) probed by potential step measurements in comparison to Pt(111) and Pt nanoparticle catalyst

期刊

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
卷 614, 期 1-2, 页码 93-100

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2007.11.028

关键词

platinum; CO oxidation; single crystal electrode; Pt(100); Pt(111)

向作者/读者索取更多资源

The oxidation of CO adsorbed to high coverage on Pt(100) electrodes in 0.5 M H2SO4 is investigated through comparative measurements with Pt(111). In potential step experiments, current-time transients recorded during CO oxidation on Pt(111) display the same peak times and adherence to a Langmuir-Hinshelwood (LH) model for adsorbed CO electrochemical oxidation as literature benchmarks. For potentials in the vicinity of 0.8-0.9 V (versus a reversible hydrogen electrode reference), CO oxidation was faster on ordered Pt(100) electrodes than on Pt(111), and responses for ordered Pt(100) were close to, but somewhat more complicated than those predicted by the LH model. On Pt(100) with defects intentionally introduced by eliminating H-2 gas from the cooling atmosphere, current-time transients recorded during CO monolayer oxidation showed tailing at long times and responses similar to those for the reaction over nanometer-scale (< 10 nm) Pt catalyst particles. The kinetics for CO monolayer oxidation on Pt(100) is discussed in terms of properties of Pt(100)-(1 x 1) islands and possible changes in island size with electrode treatment. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据