4.7 Article

Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density

期刊

JOURNAL OF ECOLOGY
卷 100, 期 3, 页码 732-741

出版社

WILEY
DOI: 10.1111/j.1365-2745.2011.01939.x

关键词

long-term tree growth; phylogenetically independent contrasts; plant development and life-history traits; tropical rain forest; vessel diameter; whole-plant performance; xylem anatomy

资金

  1. National Natural Science Foundation of China [31000237, 31170315]
  2. West Light Foundation of the Chinese Academy of Sciences

向作者/读者索取更多资源

1. Stem xylem characteristics have a great impact on growth and adult stature of trees because of their role in mechanical support, long-distance water transport and whole-plant carbon allocation. Yet, despite the potential causal link between xylem traits and plant growth/adult stature, most studies have tried to link wood density, an indirect but easy to measure proxy for wood properties, to tree growth and size. 2. To determine whether xylem traits outperform wood density as predictors of tree growth and stature, we evaluated the covariation among wood density, xylem anatomical traits, tree diameter growth rate and adult stature in 40 Asian tropical tree species through principal component analyses and through bivariate correlation, both across species and across phylogenetically independent contrasts. 3. Vessel diameter exhibited a tight negative relationship with vessel frequency. Wood density showed a significant correlation with vessel diameter and density, but not with vessel fraction. Most correlations between functional traits indicate adaptive coordination, demonstrated by significant correlations between phylogenetically independent contrasts. 4. Across species, diameter growth rate and adult stature were positively correlated with vessel lumen diameter and potential hydraulic conductivity, but not with wood density. Thus, our results suggest that xylem anatomical traits that are linked to hydraulic conductivity are better predictors of tree growth rate and adult stature than wood density. 5. Synthesis. We found that xylem anatomical traits have a more significant influence on whole-plant performance due to their direct association with stem hydraulic conductivity, whereas wood density is decoupled from hydraulic function due to complex variations in xylem components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据