4.7 Article

Intraspecific variability and trait-based community assembly

期刊

JOURNAL OF ECOLOGY
卷 98, 期 5, 页码 1134-1140

出版社

WILEY
DOI: 10.1111/j.1365-2745.2010.01687.x

关键词

community null model; determinants of plant community diversity and structure; flood meadow; gradient analysis; habitat filtering; niche differentiation; plant functional trait; species coexistence; trait plasticity

资金

  1. Ministere de la Culture, de l'Enseignement Superieur et de la Recherche (Luxembourg)

向作者/读者索取更多资源

P>1. Trait-based approaches applied to community ecology have led to a considerable advance in understanding the effect of environmental filters on species assembly. Although plant traits are known to vary both between and within species, little is known about the role of intraspecific trait variability in the non-random assembly mechanisms controlling the coexistence of species, including habitat filtering and niche differentiation. 2. We investigate the role of intraspecific variability in three key functional traits - specific leaf area (SLA), leaf dry matter content (LDMC) and height - in structuring grassland communities distributed along a flooding gradient. We quantified the contribution of intraspecific variability relative to interspecific differences in the trait-gradient relationship, and we used a null model approach to detect patterns of habitat filtering and niche differentiation, with and without intraspecific variability. 3. Community mean SLA and height varied significantly along the flooding gradient and intraspecific variability accounted for 44% and 32%, respectively, of these trait-gradient relationships. LDMC did not vary along the gradient, with and without accounting for intraspecific variability. Our null model approach revealed significant patterns of habitat filtering and niche differentiation for SLA and height, but not for LDMC. More strikingly, considering intraspecific trait variability greatly increased the detection of habitat filtering and was necessary to detect niche differentiation processes. 4. Synthesis. Our study provides evidence for a strong role of intraspecific trait variability in community assembly. Our findings suggest that intraspecific trait variability promotes species coexistence, by enabling species to pass through both abiotic and biotic filters. We argue that community ecology would benefit from more attention to intraspecific variability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据