4.2 Article

The initiation and linkage of surface fractures above a buried strike-slip fault: An experimental approach

期刊

JOURNAL OF EARTH SYSTEM SCIENCE
卷 117, 期 1, 页码 23-32

出版社

INDIAN ACAD SCIENCES
DOI: 10.1007/s12040-008-0009-y

关键词

heterogeneous simple shear; transpression; Riedel shears; sigmoidal veins; strike-slip fault

向作者/读者索取更多资源

Surface fractures in the overburdened sedimentary rocks, formed above a deep-seated basement fault, often provide important information about the kinematics of the underlying master fault. It has already been established that these surface fractures dynamically evolve and link one another with progressive displacement on the master fault below. In the present study, two different series of riedel-type experiments were carried out with clay analogue models under different boundary conditions viz., (i) heterogeneous simple shear of the cover rocks above a, buried strike slip fault (wrench system) and (ii) heterogeneous simple shear with a component of shear-normal compression of the overburden package above a basement fault (transpressional system), to observe the initiation,And linkage of surface fractures with varying T' (where T' = thickness of the overburden normalized with respect to the width of the master fault). In the wrench system, Riedel (R) shears were linked by principal displacement (Y) shears at early stages (shear strain of 0.8 to 1) in thin (2 < T' < 18) models and finally (at. a. minimum shear strain of 1.4) gave rise to a through-going fault parallel to the basement, fault without development of any other fracture. Conjugate Riedel (R') shears develop only within the thicker (T' > 18) clay models at a minimum shear strain of 0.7. With increasing deformation (at a minimum shear strain of 1.2) two R' shears were joined by an R shear and finally opened up to make a sigmoidal vein with an asymmetry antithetic to the major fault-movement sense. Under transpression, the results were similar to that of heterogeneous simple shear for layers 2 < T' < 15. In layers of intermediate thickness (15 < T, < 25) early formed high angle R shears were cross cut by low angle R shears (at a minimum shear strain of 0.5 and shortening of 0.028) and Riedel-within-Riedel shears were formed within thick (T' > 25) models (at minimum shear strain of 0.7 and shortening of 0.1), with marked angularity of secondary fault zone with the master fault at depth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据