4.3 Article

Synthesis, Characterization, and Silver Nanoparticles Fabrication in N-isopropylacrylamide-Based Polymer Microgels for Rapid Degradation of p-Nitrophenol

期刊

JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY
卷 34, 期 10, 页码 1324-1333

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01932691.2012.744690

关键词

Catalysis; hybrid gels; microgels; pH sensitivity; surface plasmon resonance; temperature sensitivity

资金

  1. University of the Punjab, Lahore, Pakistan

向作者/读者索取更多资源

Multiresponsive poly(N-isopropylacrylamide-co-methacrylic acid) microgels were synthesized by precipitation polymerization in aqueous medium. Then silver-poly(N-isopropylacrylamide-co-methacrylic acid) hybrid microgels were prepared by in-situ reduction of silver ions. Formation of microgels was confirmed by Fourier transform infrared spectroscopic analysis. pH and temperature sensitivity of microgel was studied by dynamic light scattering. Hydrodynamic radius of microgels decreases with increase in temperature at pH 8.20 and show volume phase transition temperature around 45 degrees C. At pH 2.65, hydrodynamic radius decreases with increase in temperatures upto 35 degrees C but further increase in temperature causes aggregation and microgel becomes unstable due to increase of hydrophobicity. With increase in pH of medium, the hydrodynamic radius of microgels increases sigmoidally. Formation of silver nanoparticles inside microgel and pH dependence of surface plasmon resonance wavelength of the hybrid microgels were investigated by ultraviolet-visible spectroscopy. The value of surface plasmon resonance band and absorbance associated with surface plasmon resonance band increases with increases in pH of the medium. The apparent rate constant of reduction of p-nitrophenol was found to be linearly dependent on volume of hybrid microgels used as catalyst. The system has a potential to be used as effective catalyst for rapid degradation of industrial pollutant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据