4.6 Article

Test-Retest Reproducibility Analysis of Lung CT Image Features

期刊

JOURNAL OF DIGITAL IMAGING
卷 27, 期 6, 页码 805-823

出版社

SPRINGER
DOI: 10.1007/s10278-014-9716-x

关键词

Test-retest reproducibility; Lung cancer; CT; Quantitative image features

资金

  1. NCI NIH HHS [U01 CA143062, P30 CA076292] Funding Source: Medline

向作者/读者索取更多资源

Quantitative size, shape, and texture features derived from computed tomographic (CT) images may be useful as predictive, prognostic, or response biomarkers in non-small cell lung cancer (NSCLC). However, to be useful, such features must be reproducible, non-redundant, and have a large dynamic range. We developed a set of quantitative three-dimensional (3D) features to describe segmented tumors and evaluated their reproducibility to select features with high potential to have prognostic utility. Thirty-two patients with NSCLC were subjected to unenhanced thoracic CT scans acquired within 15 min of each other under an approved protocol. Primary lung cancer lesions were segmented using semi-automatic 3D region growing algorithms. Following segmentation, 219 quantitative 3D features were extracted from each lesion, corresponding to size, shape, and texture, including features in transformed spaces (laws, wavelets). The most informative features were selected using the concordance correlation coefficient across test-retest, the biological range and a feature independence measure. There were 66 (30.14 %) features with concordance correlation coefficient a parts per thousand yenaEuro parts per thousand 0.90 across test-retest and acceptable dynamic range. Of these, 42 features were non-redundant after grouping features with R (2) (Bet) a parts per thousand yenaEuro parts per thousand 0.95. These reproducible features were found to be predictive of radiological prognosis. The area under the curve (AUC) was 91 % for a size-based feature and 92 % for the texture features (runlength, laws). We tested the ability of image features to predict a radiological prognostic score on an independent NSCLC (39 adenocarcinoma) samples, the AUC for texture features (runlength emphasis, energy) was 0.84 while the conventional size-based features (volume, longest diameter) was 0.80. Test-retest and correlation analyses have identified non-redundant CT image features with both high intra-patient reproducibility and inter-patient biological range. Thus making the case that quantitative image features are informative and prognostic biomarkers for NSCLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据