4.7 Article

Fermi-Dirac-Fokker-Planck equation: Well-posedness & long-time asymptotics

期刊

JOURNAL OF DIFFERENTIAL EQUATIONS
卷 247, 期 8, 页码 2209-2234

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jde.2009.07.018

关键词

-

向作者/读者索取更多资源

A Fokker-Planck type equation for interacting particles with exclusion principle is analyzed. The nonlinear drift gives rise to mathematical difficulties in controlling moments of the distribution function. Assuming enough initial moments are finite, we can show the global existence of weak solutions for this problem. The natural associated entropy of the equation is the main tool to derive uniform in time a priori estimates for the kinetic energy and entropy. As a consequence, long-time asymptotics in L(1) are characterized by the Fermi-Dirac equilibrium with the same initial mass. This result is achieved without rate for any constructed global solution and with exponential rate due to entropy/entropy-dissipation arguments for initial data controlled by Fermi-Dirac distributions. Finally, initial data below radial solutions with suitable decay at infinity lead to solutions for which the relative entropy towards the Fermi-Dirac equilibrium is shown to converge to zero without decay rate. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据