4.8 Article

Exploded view of higher order G-quadruplex structures through click-chemistry assisted single-molecule mechanical unfolding

期刊

NUCLEIC ACIDS RESEARCH
卷 44, 期 1, 页码 45-55

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkv1326

关键词

-

资金

  1. NSF [CHE-1026532, CHE-1415883]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [1415883] Funding Source: National Science Foundation

向作者/读者索取更多资源

Due to the long-range nature of high-order interactions between distal components in a biomolecule, transition dynamics of tertiary structures is often too complex to profile using conventional methods. Inspired by the exploded view in mechanical drawing, here, we used laser tweezers to mechanically dissect high-order DNA structures into two constituting G-quadruplexes in the promoter of the human telomerase reverse transcriptase (hTERT) gene. Assisted with click-chemistry coupling, we sandwiched one G-quadruplex with two dsDNA handles while leaving the other unit free. Mechanical unfolding through these handles revealed transition dynamics of the targeted quadruplex in a native environment, which is named as native mechanical segmentation (NMS). Comparison between unfolding of an NMS construct and that of truncated G-quadruplex constructs revealed a quadruplex-quadruplex interaction with 2 kcal/mol stabilization energy. After mechanically targeting the two G-quadruplexes together, the same interaction was observed during the first unfolding step. The unfolding then proceeded through disrupting the weaker G-quadruplex at the 5'-end, followed by the stronger G-quadruplex at the 3'-end via various intermediates. Such a pecking order in unfolding well reflects the hierarchical nature of nucleic acid structures. With surgery-like precisions, we anticipate this NMS approach offers unprecedented perspective to decipher dynamic transitions in complex biomacromolecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据