4.6 Article

Chitosan microparticles for the controlled delivery of fluoride

期刊

JOURNAL OF DENTISTRY
卷 40, 期 3, 页码 229-240

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jdent.2011.12.012

关键词

Chitosan; Microparticles; Bioadhesion; Fluoride; Controlled release

资金

  1. GlaxoSmithKline (GSK)
  2. BBSRC

向作者/读者索取更多资源

Objectives: To manufacture and characterise chitosan/fluoride microparticles prepared by spray drying and assess their utility as controlled release vehicles for fluoride. Methods: Microparticles were manufactured from dispersions containing 1.0% and 2.0% (w/v) chitosan and 0.20% or 0.40% (w/v) NaF in the absence/presence of glutaraldehyde. Particle size distributions were determined using laser diffraction; fluoride loading and release were determined by ion-selective electrode. Release profiles were studied in isotonic media (pH 5.5) over 360 min; microparticles exhibiting greatest cumulative fluoride release were further evaluated at pH 4.0 and 7.0. Particle morphology was investigated using environmental scanning electron microscopy. Bioadhesion parameters were determined with a texture-probe analyser. Results: Microparticles exhibited low polydispersity and volume mean diameters (VMDs) < 6 mu m. VMDs increased on doubling the chitosan/fluoride concentrations but were largely independent of glutaraldehyde concentration. Recovered yields were inversely proportional to dispersion viscosity due to compromised fluid atomisation; adding NaF reduced viscosity and improved yields. Best-case entrapment efficiency and NaF loading were 84.1% and 14%, respectively. Release profiles were biphasic, releasing 40-60% of the total fluoride during the first 600 s, followed by a prolonged release phase extending out to 6 h. Incorporation of 0.40% NaF to the 2.0% chitosan dispersion yielded microparticles with reduced bioadhesive parameters (F-max and WOA) versus the chitosan-only control whilst retaining significant bioadhesive potential. Conclusions: Bioadhesive chitosan/fluoride microparticles manufactured using a spray-drying protocol have been extensively characterised and further opportunity for optimisation identified. These microparticles may provide a means of increasing fluoride uptake from oral care products to provide increased protection against caries, however further work is required to demonstrate this principle in vivo. Clinical significance: Spray-drying is a low-cost route for the manufacture of bioadhesive chitosan/fluoride microparticles which can be exploited as controlled fluoride release agents to aid fluoride retention in the oral cavity. The potential exists to optimise release profiles to suit the delivery format thereby maximising the cariostatic benefits. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据