4.7 Article

RNA sequencing to study gene expression and single nucleotide polymorphism variation associated with citrate content in cow milk

期刊

JOURNAL OF DAIRY SCIENCE
卷 96, 期 4, 页码 2637-2648

出版社

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2012-6213

关键词

citrate; gene expression; RNA sequencing; single nucleotide polymorphism variation

资金

  1. California State University Agricultural Research Initiative
  2. University of California (Davis)-W. K. Kellogg Endowment
  3. Ministry of Education/Fulbright

向作者/读者索取更多资源

The technological properties of milk have significant importance for the dairy industry. Citrate, a normal constituent of milk, forms one of the main buffer systems that regulate the equilibrium between Ca2+ and H+ ions. Higher-than-normal citrate content is associated with poor coagulation properties of milk. To identify the genes responsible for the variation of citrate content in milk in dairy cattle, the metabolic steps involved in citrate and fatty acid synthesis pathways in ruminant mammary tissue using RNA sequencing were studied. Genetic markers that could influence milk citrate content in Holstein cows were used in a marker-trait association study to establish the relationship between 74 single nucleotide polymorphisms (SNP) in 20 candidate genes and citrate content in 250 Holstein cows. This analysis revealed 6 SNP in key metabolic pathway genes [isocitrate dehydrogenase 1 (NADP+), soluble (IDH1); pyruvate dehydrogenase (lipoamide) beta (PDHB); pyruvate kinase (PKM2); and solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 (SLC25A1)] significantly associated with increased milk citrate content. The amount of the phenotypic variation explained by the 6 SNP ranged from 10.1 to 13.7%. Also, genotype-combination analysis revealed the highest phenotypic variation was explained combining IDH1_23211, PDHB_5562, and SLC25A1_4446 genotypes. This specific genotype combination explained 21.3% of the phenotypic variation. The largest citrate associated effect was in the 3' untranslated region of the SLC25A1 gene, which is responsible for the transport of citrate across the mitochondrial inner membrane. This study provides an approach using RNA sequencing, metabolic pathway analysis, and association studies to identify genetic variation in functional target genes determining complex trait phenotypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据