4.7 Review

Invited review: Genes involved in the bovine heat stress response

期刊

JOURNAL OF DAIRY SCIENCE
卷 91, 期 2, 页码 445-454

出版社

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2007-0540

关键词

heat stress; gene expression; acclimation; metabolism

向作者/读者索取更多资源

The cellular heat stress (HS) response is one component of the acute systemic response to HS. Gene networks within and across cells and tissues respond to environmental heat loads above the thermoneutral zone with both intra- and extracellular signals that coordinate cellular and whole-animal metabolism. Activation of these systems appears to be initiated at skin surface temperatures exceeding 35 degrees C as animals begin to store heat and rapidly increase evaporative heat loss (EVHL) mechanisms. Gene expression changes include 1) activation of heat shock transcription factor 1 (HSF1); 2) increased expression of heat shock proteins (HSP) and decreased expression and synthesis of other proteins; 3) increased glucose and amino acid oxidation and reduced fatty acid metabolism; 4) endocrine system activation of the stress response; and 5) immune system activation via extracellular secretion of HSP. If the stress persists, these gene expression changes lead to an altered physiological state referred to as acclimation, a process largely controlled by the endocrine system. In the acclimated state, metabolism is adjusted to minimize detrimental effects of increased thermal heat load. The role of secreted HSP in feedback regulation of the immune and endocrine system has not yet been investigated. The variation in EVHL among animals and the central role that HSF1 has in coordinating thermal tolerance suggest that there is opportunity to improve thermal tolerance via gene manipulation. Determining the basis for altered energy metabolism during thermal stress will lead to opportunities for improved animal performance via altered nutritional management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据