4.5 Article

Detailed and simplified non-linear models for timber-framed masonry structures

期刊

JOURNAL OF CULTURAL HERITAGE
卷 13, 期 1, 页码 47-58

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.culher.2011.05.009

关键词

Timber-framed masonry; Seismic performance; Non-linear analysis; Plasticity model; Non-linear hinges

资金

  1. Bodossaki Foundation

向作者/读者索取更多资源

The need for improved methodologies to describe the post-elastic behaviour of existing structures in the framework of seismic vulnerability assessment has long been recognised. The study presented herein deals with the non-linear seismic response of timber-framed (T-F) masonry structures, such as those found in traditional edifices of cultural heritage. T-F masonry generally consists of masonry walls reinforced with timber elements, including horizontal and vertical elements, as well as X-type diagonal braces. Since the Bronze Age T-F buildings were common in regions where moderate-to-strong earthquakes were frequent. There is ample historical evidence that the embodiment of timber elements in masonry walls is closely related to earthquakes. The paper focuses on the description of the seismic response of T-F structures by means of a detailed analytical model. Although elastic analysis can adequately identify regions with high stresses, it fails to capture the redistribution of stresses and the ensuing failure mechanism. The simulation of T-F masonry is made here using a plasticity model. Non-linear laws for the materials, such as a trilinear stress-strain curve for monotonic loading of timber and a Mohr-Coulomb contact law for wooden members, are used to express their behaviour under moderate and high stress levels. An associated flow rule is assumed and Hill's yield criterion is adopted with isotropic work-hardening. Masonry infills are not included in the model due to their insignificant contribution after the initial elastic stage of the response. The proposed finite element model is intended for a detailed non-linear static analysis of parts of a building. A simplified model using beam and link elements with non-linear axial springs is also developed, which is appropriate for 2D non-linear analysis of common buildings. Both models are validated using experimental results of three T-F masonry walls obtained from the literature. Finally a non-linear static analysis of the facade of an existing building situated in the island of Lefkas, Greece is performed. (C) 2011 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据