4.4 Article

The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers

期刊

JOURNAL OF CRYSTAL GROWTH
卷 310, 期 15, 页码 3453-3458

出版社

ELSEVIER
DOI: 10.1016/j.jcrysgro.2008.04.037

关键词

metal-organic chemical vapor deposition; semiconducting III-V materials; infrared devices

向作者/读者索取更多资源

We have investigated thermophotovoltaic monolithic interconnected modules fabricated from In0.68Ga0.32As on InP using In(PAs) buffer layers to mitigate the lattice mismatch. The growth of these devices presented several challenges. For example, the n-type dopant Te forms a persistent surface-segregation layer on In(PAs) and (InGa)As layers, which unintentionally distributes Te into subsequently deposited layers. To solve this problem, we identified growth conditions that promote Te desorption from the InGaAs surface, thereby enabling the formation of sharp doping profiles. Another significant challenge involved In-rich surface defects, which form during In0.68Ga0.32As growth and act as shunt paths that severely reduce cell performance. To address this problem, we implemented pre-growth 100 cm(-2) particle-control procedures that allow surface defect densities below to be obtained. Our progress allowed the demonstration of thermophotovoltaic cells producing 348 mV/junction open-circuit voltage with a fill factor exceeding 70%. (c) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据