4.6 Article

Inflation and late-time cosmic acceleration in non-minimal Maxwell- F(R) gravity and the generation of large-scale magnetic fields

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1475-7516/2008/04/024

关键词

magnetic fields; inflation; gravity; physics of the early universe

资金

  1. ICREA Funding Source: Custom

向作者/读者索取更多资源

We study inflation and late-time acceleration in the expansion of the universe in non-minimal electromagnetism, in which the electromagnetic field couples to the scalar curvature function. It is shown that power-law inflation can be realized due to the non-minimal gravitational coupling of the electromagnetic field, and that large-scale magnetic fields can be generated due to the breaking of the conformal invariance of the electromagnetic field through its non-minimal gravitational coupling. Furthermore, it is demonstrated that both inflation and the late-time acceleration of the universe can be realized in a modified Maxwell-F(R) gravity which is consistent with solar-system tests and cosmological bounds and free of instabilities. At small curvature typical for the current universe the standard Maxwell theory is recovered. We also consider the classically equivalent form of non-minimal Maxwell-F(R) gravity, and propose the origin of the non-minimal gravitational coupling function based on renormalization-group considerations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据