4.8 Article

Biophysical characterization of hyper-branched polyethylenimine-graft-polycaprolactone-block-mono-methoxyl-poly(ethylene glycol) copolymers (hy-PEI-PCL-mPEG) for siRNA delivery

期刊

JOURNAL OF CONTROLLED RELEASE
卷 153, 期 3, 页码 262-268

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2011.04.017

关键词

Polyplexes, self-assembled architecture; Buffer capacity; Complexes formation constants; Stability; Size and zeta-potential; siRNA transfection

资金

  1. European Commission [NMP4-CT-2006-026668]

向作者/读者索取更多资源

A library of mono-methoxyl-poly(ethylene glycol)-block-poly(epsilon-caprolactone) (mPEG-PCL) modified hyperbranched PEI copolymers (hy-PEI-PCL-mPEG) was synthesized to establish structure function relationships for siRNA delivery. These amphiphilic block-copolymers were thought to provide improved colloidal stability and endosomal escape of polyplexes containing siRNA. The influence of the mPEG chain length, PCL segment length, hy-PEI molecular weight and the graft density on their biophysical properties was investigated. In particular, buffer capacity, complex formation constants, gene condensation, polyplex stability, polyplex size and zeta-potential were measured. It was found that longer mPEG chains, longer PCL segments and higher graft density beneficially affected the stability and formation of polyplexes and reduced the zeta-potential of siRNA polyplexes. Significant siRNA mediated knockdown was observed for hy-PEI25k-(PCL900-mPEG2k)(1) at N/P 20 and 30, implying that the PCL hydrophobic segment played a very important role in siRNA transfection. These gene delivery systems merit further investigation under in vivo conditions. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据